
Instant download and all chapters Introduction to Hydrology 5th Edition Warren Viessman Gary L. Lewis SOLUTIONS MANUAL

Solutions Manual

INTRODUCTION TO HYDROLOGY
FIFTH EDITION

warren Viessman, Jr.
University of Florida

Gary L. Lewis
Consulting Engineer

Prentice Hall
Pearson Education, Inc.
Upper Saddle River, New Jersey 07458
Contents

1. Introduction
2. Hydrologic Measurements and Data Sources
3. Statistical Methods in Hydrology
4. Precipitation
5. Interception and Depression Storage
6. Evaporation and Transpiration
7. Infiltration
8. Surface Water Hydrology
9. Hydrographs
10. Groundwater Hydrology
11. Urban Hydrology
12. Hydrologic Simulation and Streamflow Synthesis
13. Hydrology in Design
CHAPTER 1

100*10^6*0.02 = 2*10^6 m^3 1 acre-ft = 43,560 cubic feet cubic meters*35.31 = cubic feet
\((2*10^6*35.31)/43,560 = 1,612.2\) acre-ft

volume/volume per unit time = time \((500,000*0.3)/(0.5) = 300,000\) sec.
300,000/3,600 = 83.3 hours

\((450 + 500)/2 - (500 + 530)/2 = \text{avg. inflow - avg. outflow}
\)

the change in storage is thus - 40 cfs

\(-40*3600/43560 = -3.31,\) the change in storage in acre-ft.

The initial storage is thus depleted by 3.31 ac-ft 3.31*43,560/35.31 = 4,083 cubic meters

125/365 = 0.34 cm/day = 0.035 cm/day 0.34/2.54 = 0.13 in./day

volume = 5280*5280*0.5 = 13,939,220 cubic feet \(V/Q = \text{time}\)

13,939,220*3600/12 = 1,161,600 sec, or 322.7 hr, or 13.4 days \(ET = P - R\)

\(R = (140*3600*24*365)/(10,000*1000^2) = \)

0.44 m/yr or 44 cm/yr \(ET = 105 - 44 = 61\) cm/yr This is a crude estimate.

equivalent depth = vol/area

inflow = 25*3600*24*365 = 788,400 cubic feet/yr

inflow/(3650*43560) = 4.96 ft/yr

\(E = 100*365/3650 = 10.0\) ft/yr

Hence there is a drop in level of 5.04 ft

\(I_{avg. - O_{avg.}} = \text{change in storage per unit time}\ (20 - 18)*3600 = 7,200\) cubic meters The storage is thus increased by 7,200 cubic meters resulting in a final storage of27,200 cubic meters
CHAPTER 2

Problems in this chapter are to be developed by the instructor.
CHAPTER 3

3.1 - 3.4 To be assigned by instructor.

3.5 For the James River rainfall:

<table>
<thead>
<tr>
<th>Interval in.</th>
<th>f</th>
<th>μ</th>
<th>P(x)</th>
<th>F(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(36-37)</td>
<td>2</td>
<td>2</td>
<td>0.057</td>
<td>0.057</td>
</tr>
<tr>
<td>(38-39)</td>
<td>4</td>
<td>6</td>
<td>0.114</td>
<td>0.171</td>
</tr>
<tr>
<td>(40-41)</td>
<td>7</td>
<td>13</td>
<td>0.200</td>
<td>0.371</td>
</tr>
<tr>
<td>(42-43)</td>
<td>9</td>
<td>22</td>
<td>0.257</td>
<td>0.628</td>
</tr>
<tr>
<td>(44-45)</td>
<td>5</td>
<td>27</td>
<td>0.143</td>
<td>0.771</td>
</tr>
<tr>
<td>(46-47)</td>
<td>4</td>
<td>31</td>
<td>0.114</td>
<td>0.885</td>
</tr>
<tr>
<td>(48-49)</td>
<td>2</td>
<td>33</td>
<td>0.057</td>
<td>0.942</td>
</tr>
<tr>
<td>(50-51)</td>
<td>2</td>
<td>35</td>
<td>0.057</td>
<td>0.999</td>
</tr>
</tbody>
</table>

a) \(P(\text{MAR} > 40) = 1.000 - 0.171 = 0.829 = 82.9\% \)

b) \(P(\text{MAR} > 50) = 0.057 = 5.7\% \)

c) \(P(40 < \text{MAR} < 50) = 0.942 - 0.171 = 0.771 = 77.1\% \)

3.6 Using the curve data for a standard normal curve (Table B.1) requires standardization of the limits of the integral,

\[
z = \frac{x - \mu}{\frac{S}{2}} = 2
\]

From Table B.1, the integral is the area to the right of \(F(z = 2) \), or 0.5 - 0.4772 = 0.0228.

3.7 For the data given:

a) The area under the curve must be 1.0 to qualify as a probability density function,

\[
A = \int Pf^\infty dx = b^\infty = 1.0 \cdot 8
\]

This gives \(b = 2.0 \)

b) This is the area between 0.0 and 0.5, or \(0.5^{3/8} = 0.016 \)

3.8 The histogram is symmetric, has zero skew, and mean = median = mode.
Sketch for Prob. 3.8 Since area to right of mode is 50%, \(F(\text{mode}) = 50\% \) and \(T = 2 \text{ yr.} \)

Given \(x = 10.3, s = 1.1, C_v = 0.11, n = 20 \):

\[
\text{S.E.}(x) = s\sqrt{\frac{1}{n}}T^\gamma = 1.1 \sqrt{\frac{1}{20}} = 0.245
\]

\[
\text{S.E.}(s) = \frac{s}{V2n} = \frac{1.1}{\sqrt{40}} = 0.0174
\]

\[
\text{S.E.}(C_v) = \frac{C_v}{V1 + 2C_v^2\sqrt{\frac{n}{2}}} = \frac{0.11}{V1 + 2(0.11)^2/20} = 0.017
\]

\[
95\% \text{ C.I.: } z = \pm 1.96 \text{ x} \pm 1.96 (\text{S.E.}_x) = 10.3 \pm 0.48 = \{10.78 \text{ to } 9.82\}
\]

Because the median divides the area in half, most of the area would be to the right of the median. The distribution is probably skewed right.

Sketch:

\[f(x)\]

Sketch for p.d.f. for Prob. 3.11
a) Left skewed

b) Negative because Pearson skew = \(\frac{\text{mean} - \text{mode}}{\text{sx}} \)

3.12 For the 30,000 cfs value:

\[T_r = 60 \text{ yrs} = 20 \text{ yrs} \]
\[\frac{3}{3} \times 3.12 \]

3.13 Frequency analysis:

a)

<table>
<thead>
<tr>
<th>m rank</th>
<th>Peak value</th>
<th>(\frac{m}{T_r})</th>
<th>T_r = 1/F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1000</td>
<td>.1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>900</td>
<td>.2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>800</td>
<td>.3</td>
<td>3.33</td>
</tr>
<tr>
<td>4</td>
<td>700</td>
<td>.4</td>
<td>2.5</td>
</tr>
<tr>
<td>5</td>
<td>600</td>
<td>.5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>500</td>
<td>.6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>400</td>
<td>.7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>300</td>
<td>.8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>200</td>
<td>.9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

By interpolation, 4-yr value is

\[800 + \frac{4 - 3.33}{5 - 3.33} \times (100) \]

\[= 840 \text{ cfs} \]

b) Using Table B.1,

\[Q_{4-\text{yr}} = Q + K s_Q = 550 + .67(300) = 750 \text{ cfs} \]

3.14 For an annual precipitation of 30 in.

a) \[P(x > 30) = G(30) \]

\[z = \frac{(30 - 27.6)}{6.06} = 0.396 \]

\[F(z) = 0.15392 \]
3.15 \(P(E, U E_2) = P(Ei) + P(E_2) - P(E \cap E_2) \)

a) If \(E_j \) and \(E_2 \) are independent, \(P(Ei|E_2) = P(Ei) \)
 and \(P(EioE_2) = P(Ej) \times P(E_2) \)
 \(P(E, U E_2) = 0.3 + 0.3 - 0.3 \times 0.3 = 0.51 \)

b) If dependent, with \(P(Ei | E_2) = 0.1 \),
 \(P(Ei \geq E_2) = 0.1 \times 0.3 = 0.03 \)
 and \(P(E, U E_2) = 0.3 + 0.3 - 0.03 = 0.57 \)

3.16 \(P(A) = 0.4, P(\text{no } A) = P(A) = 1 - 0.4 = 0.6 \)
\(P(B) = 0.5, P(\text{no } B) = P(B) = 1 - 0.5 = 0.5; \)

A and B independent

a) \(P(A \cap B) = P(A) \times P(B) = 0.4 \times 0.5 = 0.20 \)

b) \(P(A \cap B) = P(A) \times P(B) = 0.6 \times 0.5 = 0.30 \)

\(P(E_1|E_2) = 0.9, P(Ei|E_1) = 0.2, P(E, n E_2) = 0.1 \)
\(P(Ei) = P(E, n E_2)/P(E_2|E_1) = 0.1/0.2 = 0.5 \ P(E_2) \)
\(= P(Ei n E_2)/P(Ei|E_2) = 0.1/0.9 = 0.111 \)

3.17 Two random events that are:

3.18 a) Mutually exclusive:
 A: Precipitation today exceeds 4 in.
 B: Precipitation today does not exceed 3"

b) Dependent:
 A: Precipitation today exceeds 4 in.
 B: Runoff today exceeds 1 in.

c) Mutually exclusive and dependent:
 A: Precipitation today does not exceed 4 in.
 B: Runoff today exceeds 6 in.

d) Neither mutually exclusive nor dependent:
 A: Today's precipitation exceeds 4 in.